Approximate Bayesian methods for kernel-based object tracking
نویسندگان
چکیده
A framework for real-time tracking of complex non-rigid objects is presented. The object shape is approximated by an ellipse and its appearance by histogram based features derived from local image properties. An efficient search procedure is used to find the image region with a histogram most similar to the histogram of the tracked object. The procedure is a natural extension of the mean-shift procedure with Gaussian kernel which allows handling the scale and orientation changes of the object. The presented procedure is integrated into a set of Bayesian filtering schemes. We compare the regular and mixture Kalman filter and other sequential importance sampling (particle filtering) techniques. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
Using a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملVisual Tracking using Kernel Projected Measurement and Log-Polar Transformation
Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...
متن کاملKernel-Bayesian Framework for Object Tracking
This paper proposes a general Kernel-Bayesian framework for object tracking. In this framework, the kernel based method—mean shift algorithm is embedded into the Bayesian framework seamlessly to provide a heuristic prior information to the state transition model, aiming at effectively alleviating the heavy computational load and avoiding sample degeneracy suffered by the conventional Bayesian t...
متن کاملPropagation of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting
The object of Bayesian modelling is the predictive distribution, which in a forecasting scenario enables evaluation of forecasted values and their uncertainties. In this paper we focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaussian Process and the Relevance Vector Machine. We derive novel analytic expressions ...
متن کاملObject Tracking via Tensor Kernel Space Projection
Although there has been significant progress in the past decade, object tracking under complex environment is still a very challenging task, due to the irregular changes in object appearance. To alleviate these problems, this research developed an object tracking algorithm via tensor kernel space projection. In the initial stage of tracking, a template matching algorithm was used to obtain a pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 113 شماره
صفحات -
تاریخ انتشار 2009